For the control system shown in the figure; deduce the transfer function $E_{o}(s) / E_{i}(s)$ as function of the circuit elements.

Fig. (1)

Fig. (1) circuit in t- domain

From S-domain circuit in Fig. (2):

- Total impedance Z of the components $R / /(1 / C S) / / L S$ is as follows:

$$
\begin{aligned}
& \frac{1}{Z}=\frac{1}{R}+\frac{1}{L S}+\frac{1}{1 / C S} \\
& Z=1 /\left(\frac{1}{R}+\frac{1}{L S}+\frac{1}{1 / / S}\right)=\frac{R L S}{R L C S^{2}+L S+R} \\
& \frac{E_{o}(s)}{E_{i}(s)}=\frac{R}{Z+R}=\frac{R^{2} L C S^{2}+R L S+R^{2}}{R^{2} L C S^{2}+2 R L S+R^{2}}
\end{aligned}
$$

Note that: you can get Z by:
First Obtain R/LS as Z_{1}
Second Obtain $\mathrm{Z}_{1} / /(1 / \mathrm{CS})$ as Z
Then: $Z=\frac{R L S}{R L C S^{2}+L S+R}$

